Graphene oxide for photonics, electronics and optoelectronics

Graphene oxide (GO) was initially developed to emulate graphene, but it was soon recognized as a functional material in its own right, addressing an application space that is not accessible to graphene and other carbon materials. Over the past decade, research on GO has made tremendous advances in material synthesis and property tailoring. These, in turn, have led to rapid progress in GO-based photonics, electronics and optoelectronics, paving the way for technological breakthroughs with exceptional performance. In this Review, we provide an overview of the optical, electrical and optoelectronic properties of GO and reduced GO on the basis of their chemical structures and fabrication approaches, together with their applications in key technologies such as solar energy harvesting, energy storage, medical diagnosis, image display and optical communications. We also discuss the challenges of this field, together with exciting opportunities for future technological advances.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

133,45 € per year

only 11,12 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Flexible high-performance graphene hybrid photodetectors functionalized with gold nanostars and perovskites

Article Open access 18 December 2020

Temperature dependence of electrical conductivity and variable hopping range mechanism on graphene oxide films

Article Open access 23 March 2023

Staggered circular nanoporous graphene converts electromagnetic waves into electricity

Article Open access 08 April 2023

References

  1. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature318, 162–163 (1985). ArticleCASGoogle Scholar
  2. Iijima, S. Helical microtubules of graphitic carbon. Nature354, 56–58 (1991). ArticleCASGoogle Scholar
  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science306, 666–669 (2004). ArticleCASPubMedGoogle Scholar
  4. Brodie, B. C. Xiii. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond.149, 249–259 (1859). Google Scholar
  5. Loh, K. P., Bao, Q., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem.2, 1015–1024 (2010). ArticleCASPubMedGoogle Scholar
  6. Wu, J. et al. Graphene oxide for integrated photonics and flat optics. Adv. Mater.33, e2006415 (2020). ArticlePubMedGoogle Scholar
  7. Compton, O. C. & Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small6, 711–723 (2010). ArticleCASPubMedGoogle Scholar
  8. Pei, S. & Cheng, H.-M. The reduction of graphene oxide. Carbon50, 3210–3228 (2012). ArticleCASGoogle Scholar
  9. Dimiev, A. M. & Tour, J. M. Mechanism of graphene oxide formation. ACS Nano8, 3060–3068 (2014). ArticleCASPubMedGoogle Scholar
  10. Dimiev, A. M. & Eigler, S. Graphene Oxide: Fundamentals and Applications (John Wiley & Sons, 2016).
  11. Amirov, R. R., Shayimova, J., Nasirova, Z., Solodov, A. & Dimiev, A. M. Analysis of competitive binding of several metal cations by graphene oxide reveals the quantity and spatial distribution of carboxyl groups on its surface. Phys. Chem. Chem. Phys.20, 2320–2329 (2018). ArticleCASPubMedGoogle Scholar
  12. Dimiev, A. M., Alemany, L. B. & Tour, J. M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano7, 576–588 (2013). ArticleCASPubMedGoogle Scholar
  13. Rozada, R. et al. From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration. Nanoscale7, 2374–2390 (2015). ArticleCASPubMedGoogle Scholar
  14. Eigler, S. et al. Wet chemical synthesis of graphene. Adv. Mater.25, 3583–3587 (2013). ArticleCASPubMedGoogle Scholar
  15. Voiry, D. et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science353, 1413 (2016). ArticleCASPubMedGoogle Scholar
  16. Yan, J. A., Xian, L. & Chou, M. Y. Structural and electronic properties of oxidized graphene. Phys. Rev. Lett.103, 086802 (2009). ArticlePubMedGoogle Scholar
  17. Yang, Y. Y. et al. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photonics6, 1033–1040 (2019). ArticleCASGoogle Scholar
  18. Mattevi, C. et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater.19, 2577–2583 (2009). ArticleCASGoogle Scholar
  19. Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano4, 4806–4814 (2010). ArticleCASPubMedGoogle Scholar
  20. Guo, Y. et al. General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating. ACS Nano4, 5749–5754 (2010). ArticleCASPubMedGoogle Scholar
  21. Wong, S. I., Lin, H., Sunarso, J., Wong, B. T. & Jia, B. Triggering a self-sustaining reduction of graphene oxide for high-performance energy storage devices. ACS Appl. Nano Mater. 3, 9117–9126 (2020). ArticleCASGoogle Scholar
  22. Lin, K. T., Lin, H., Yang, T. & Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun.11, 1389 (2020). ArticleCASPubMed CentralPubMedGoogle Scholar
  23. Lin, H. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics13, 270–276 (2019). ArticleCASGoogle Scholar
  24. Wu, J. et al. Graphene oxide waveguide and micro‐ring resonator polarizers. Laser Photonics Rev.13, 1900056 (2019). ArticleGoogle Scholar
  25. Park, H., Lim, S., Nguyen, D. D. & Suk, J. W. Electrical measurements of thermally reduced graphene oxide powders under pressure. Nanomaterials9, 1387 (2019). ArticleCASPubMed CentralPubMedGoogle Scholar
  26. Feicht, P. et al. Brodie’s or Hummers’ method: oxidation conditions determine the structure of graphene oxide. Chemistry25, 8955–8959 (2019). ArticleCASPubMedGoogle Scholar
  27. Chua, C. K. & Pumera, M. The reduction of graphene oxide with hydrazine: elucidating its reductive capability based on a reaction-model approach. Chem. Commun.52, 72–75 (2016). ArticleCASGoogle Scholar
  28. Gusev, A. et al. Medium-dependent antibacterial properties and bacterial filtration ability of reduced graphene oxide. Nanomaterials9, 1454 (2019). ArticleCASPubMed CentralPubMedGoogle Scholar
  29. Li, X. et al. Graphene metalens for particle nanotracking. Photonics Res.8, 1316 (2020). ArticleGoogle Scholar
  30. Zheng, X. et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun.6, 8433 (2015). ArticleCASPubMedGoogle Scholar
  31. Zheng, X., Lin, H., Yang, T. & Jia, B. Laser trimming of graphene oxide for functional photonic applications. J. Phys. D: Appl. Phys.50, 074003 (2016). ArticleGoogle Scholar
  32. Yang, T., Lin, H., Zheng, X., Loh, K. P. & Jia, B. Tailoring pores in graphene-based materials: from generation to applications. J. Mater. Chem. A5, 16537–16558 (2017). ArticleCASGoogle Scholar
  33. Zhao, Y., Han, Q., Cheng, Z., Jiang, L. & Qu, L. Integrated graphene systems by laser irradiation for advanced devices. Nano Today12, 14–30 (2017). ArticleCASGoogle Scholar
  34. Zhang, Y. et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today5, 15–20 (2010). ArticleCASGoogle Scholar
  35. Zhang, Y.-L., Chen, Q.-D., Xia, H. & Sun, H.-B. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today5, 435–448 (2010). ArticleCASGoogle Scholar
  36. Zhang, Y. L. et al. Photoreduction of graphene oxides: methods, properties, and applications. Adv. Optical Mater.2, 10–28 (2014). ArticleGoogle Scholar
  37. Li, X. H. et al. A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers. ChemSusChem5, 642–646 (2012). ArticleCASPubMedGoogle Scholar
  38. Bagri, A. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem.2, 581 (2010). ArticleCASPubMedGoogle Scholar
  39. Levis, R. J., Menkir, G. M. & Rabitz, H. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science292, 709–713 (2001). ArticleCASPubMedGoogle Scholar
  40. Williams, G., Seger, B. & Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano2, 1487–1491 (2008). ArticleCASPubMedGoogle Scholar
  41. Huang, L. et al. Pulsed laser assisted reduction of graphene oxide. Carbon49, 2431–2436 (2011). ArticleCASGoogle Scholar
  42. Prezioso, S. et al. Large area extreme-UV lithography of graphene oxide via spatially resolved photoreduction. Langmuir28, 5489–5495 (2012). ArticleCASPubMedGoogle Scholar
  43. Chang, H.-W., Tsai, Y.-C., Cheng, C.-W., Lin, C.-Y. & Wu, P.-H. Reduction of graphene oxide in aqueous solution by femtosecond laser and its effect on electroanalysis. Electrochem. Commun.23, 37–40 (2012). ArticleCASGoogle Scholar
  44. Guo, L. et al. Laser‐mediated programmable n doping and simultaneous reduction of graphene oxides. Adv. Opt. Mater.2, 120–125 (2014). ArticleGoogle Scholar
  45. Long, D. et al. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir26, 16096–16102 (2010). ArticleCASPubMedGoogle Scholar
  46. Jing, Z. et al. Active-screen plasma multi-functionalization of graphene oxide for supercapacitor application. J. Mater. Sci.56, 3296–3311 (2021). ArticleCASGoogle Scholar
  47. Li, X. et al. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc.131, 15939–15944 (2009). ArticleCASPubMedGoogle Scholar
  48. Jia, L. et al. Fabrication technologies for the on-chip integration of 2D materials. Small Methods6, 2101435 (2022). ArticleGoogle Scholar
  49. Zhang, L. et al. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography. Adv. Mater.24, 436–440 (2012). ArticleCASPubMedGoogle Scholar
  50. Dua, V. et al. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed.49, 2154–2157 (2010). ArticleCASGoogle Scholar
  51. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol.5, 574–578 (2010). ArticleCASPubMedGoogle Scholar
  52. El-Kady, M. F., Strong, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science335, 1326 (2012). ArticleCASPubMedGoogle Scholar
  53. El-Kady, M. F. & Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun.4, 1475 (2013). ArticlePubMedGoogle Scholar
  54. Le, L. T., Ervin, M. H., Qiu, H., Fuchs, B. E. & Lee, W. Y. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun.13, 355–358 (2011). ArticleCASGoogle Scholar
  55. Cao, G. et al. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments. ACS Appl. Mater. Interfaces11, 20298–20303 (2019). ArticleCASPubMedGoogle Scholar
  56. Wei, S. et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano15, 4769–4776 (2021). ArticleCASPubMedGoogle Scholar
  57. Zhang, H., Yang, D., Lei, C., Lin, H. & Jia, B. Ultrahigh heating rate induced micro-explosive production of graphene for energy storage. J. Power Sources442, 227224 (2019). ArticleCASGoogle Scholar
  58. Hu, X. et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater.https://doi.org/10.1002/adma.201604031 (2017). ArticlePubMedGoogle Scholar
  59. Li, X. et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl Acad. Sci. USA113, 13953–13958 (2016). ArticleCASPubMed CentralPubMedGoogle Scholar
  60. Aspermair, P. et al. Reduced graphene oxide-based field effect transistors for the detection of E7 protein of human papillomavirus in saliva. Anal. Bioanal. Chem.413, 779–787 (2021). ArticleCASPubMedGoogle Scholar
  61. Tian, H. et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep.5, 8603 (2015). ArticleCASPubMed CentralPubMedGoogle Scholar
  62. Chan, K.-Y. et al. Graphene oxide thin film structural dielectric capacitors for aviation static electricity harvesting and storage. Compos. Part B Eng.201, 108375 (2020). ArticleCASGoogle Scholar
  63. Chan, K.-Y., Jia, B., Lin, H., Zhu, B. & Lau, K.-T. Design of a structural power composite using graphene oxide as a dielectric material layer. Mater. Lett.216, 162–165 (2018). ArticleCASGoogle Scholar
  64. Cao, Y. et al. Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions. Small10, 2345–2351 (2014). ArticleCASPubMedGoogle Scholar
  65. Li, G. et al. Self-powered UV-near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction. Small12, 5019–5026 (2016). ArticleCASPubMedGoogle Scholar
  66. Cao, G., Gan, X., Lin, H. & Jia, B. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh–Sommerfeld theory. OptoElectron. Adv.1, 18001201–18001207 (2018). Google Scholar
  67. Li, X., Zhang, Q., Chen, X. & Gu, M. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci. Rep.3, 2819 (2013). ArticlePubMed CentralPubMedGoogle Scholar
  68. Hu, Q., Lin, K. T., Lin, H., Zhang, Y. & Jia, B. Graphene metapixels for dynamically switchable structural color. ACS Nano15, 8930–8939 (2021). ArticleCASPubMedGoogle Scholar
  69. Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H. & Teng, H. Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater.20, 2255–2262 (2010). ArticleCASGoogle Scholar
  70. Zheng, X. et al. Free-standing graphene oxide mid-infrared polarizers. Nanoscale12, 11480–11488 (2020). ArticleCASPubMedGoogle Scholar
  71. Liao, Q. et al. Reduced graphene oxide-based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance. Adv. Sci.7, 1903125 (2020). ArticleCASGoogle Scholar
  72. Thakur, A. K. et al. A novel reduced graphene oxide based absorber for augmenting the water yield and thermal performance of solar desalination unit. Mater. Lett.286, 128867 (2021). ArticleCASGoogle Scholar
  73. Su, H. et al. A hybrid hydrogel with protonated g-C3N4 and graphene oxide as an efficient absorber for solar steam evaporation. Sustain. Mater. Technol.20, e00095 (2019). CASGoogle Scholar
  74. Finnerty, C., Zhang, L., Sedlak, D. L., Nelson, K. L. & Mi, B. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. Environ. Sci. Technol.51, 11701–11709 (2017). ArticleCASPubMedGoogle Scholar
  75. Li, X. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun.6, 6984 (2015). ArticlePubMedGoogle Scholar
  76. Han, J., Lin, K. T., Lin, H., Lau, K. T. & Jia, B. Tunable thermochromic graphene metamaterials with iridescent color. Nano Lett.22, 6026–6033 (2022). ArticleCASPubMedGoogle Scholar
  77. Bao, Q. et al. Broadband graphene polarizer. Nat. Photonics5, 411–415 (2011). ArticleCASGoogle Scholar
  78. Lin, H. et al. Chalcogenide glass-on-graphene photonics. Nat. Photonics11, 798–805 (2017). ArticleCASGoogle Scholar
  79. Tan, Y. et al. Polarization-dependent optical absorption of MoS(2) for refractive index sensing. Sci. Rep.4, 7523 (2014). ArticleCASPubMed CentralPubMedGoogle Scholar
  80. Yan, Y. et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun.5, 4876 (2014). ArticleCASPubMedGoogle Scholar
  81. Dai, D. X., Bauters, J. & Bowers, J. E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci. Appl.1, e1 (2012). ArticleGoogle Scholar
  82. Dai, D. X., Liu, L., Gao, S. M., Xu, D. X. & He, S. L. Polarization management for silicon photonic integrated circuits. Laser Photonics Rev.7, 303–328 (2013). ArticleCASGoogle Scholar
  83. Lim, W. H. et al. Graphene oxide-based waveguide polariser: from thin film to quasi-bulk. Opt. Express22, 11090–11098 (2014). ArticleCASPubMedGoogle Scholar
  84. Chong, W. S. et al. Configurable TE- and TM-pass graphene oxide-coated waveguide polarizer. IEEE Photon. Technol. Lett.32, 627–630 (2020). ArticleCASGoogle Scholar
  85. Ghosh, S., Mandal, D., Chandra, A. & Bhaktha, S. N. B. Effect of laser irradiation on graphene oxide integrated TE-pass waveguide polarizer. J. Lightwave Technol.37, 2380–2385 (2019). ArticleCASGoogle Scholar
  86. Guan, X. W. et al. Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide. Opt. Lett.39, 4514–4517 (2014). ArticleCASPubMedGoogle Scholar
  87. Dai, D. X., Wang, Z., Julian, N. & Bowers, J. E. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Opt. Express18, 27404–27415 (2010). ArticleCASPubMedGoogle Scholar
  88. Behabtu, N. et al. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotechnol.5, 406–411 (2010). ArticleCASPubMedGoogle Scholar
  89. Kim, J. E. et al. Graphene oxide liquid crystals. Angew. Chem. Int. Ed.50, 3043–3047 (2011). ArticleCASGoogle Scholar
  90. Narayan, R., Kim, J. E., Kim, J. Y., Lee, K. E. & Kim, S. O. Graphene oxide liquid crystals: discovery, evolution and applications. Adv. Mater.28, 3045–3068 (2016). ArticleCASPubMedGoogle Scholar
  91. Padmajan Sasikala, S. et al. Graphene oxide liquid crystals: a frontier 2D soft material for graphene-based functional materials. Chem. Soc. Rev.47, 6013–6045 (2018). ArticleCASPubMedGoogle Scholar
  92. Zakri, C. et al. Liquid crystals of carbon nanotubes and graphene. Philos. Trans. A Math. Phys. Eng. Sci.371, 20120499 (2013). PubMedGoogle Scholar
  93. Shen, T. Z., Hong, S. H. & Song, J. K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat. Mater.13, 394–399 (2014). ArticleCASPubMedGoogle Scholar
  94. Yang, H. et al. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications. ACS Nano12, 11407–11416 (2018). ArticleCASPubMedGoogle Scholar
  95. Park, H. et al. Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport. Sci. Adv.4, eaau2104 (2018). ArticleCASPubMed CentralPubMedGoogle Scholar
  96. Kim, H. et al. Polydopamine-graphene oxide flame retardant nanocoatings applied via an aqueous liquid crystalline scaffold. Adv. Funct. Mater.28, 1803172 (2018). ArticleGoogle Scholar
  97. Olate-Moya, F. et al. Chondroinductive alginate-based hydrogels having graphene oxide for 3D printed scaffold fabrication. ACS Appl. Mater. Interfaces12, 4343–4357 (2020). ArticleCASPubMedGoogle Scholar
  98. Arshad, F., Selvaraj, M., Zain, J., Banat, F. & Haija, M. A. Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions. Sep. Purif. Technol.209, 870–880 (2019). ArticleCASGoogle Scholar
  99. Ghawanmeh, A. A., Ali, G. A. M., Algarni, H., Sarkar, S. M. & Chong, K. F. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res.12, 973–990 (2019). ArticleCASGoogle Scholar
  100. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photonics4, 535–544 (2010). ArticleCASGoogle Scholar
  101. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics7, 597–607 (2013). ArticleCASGoogle Scholar
  102. Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature456, 81–84 (2008). ArticleCASPubMedGoogle Scholar
  103. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature589, 44–51 (2021). ArticleCASPubMedGoogle Scholar
  104. Jiang, T., Kravtsov, V., Tokman, M., Belyanin, A. & Raschke, M. B. Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene. Nat. Nanotechnol.14, 838–843 (2019). ArticleCASPubMedGoogle Scholar
  105. Yin, X. et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science344, 488 (2014). ArticleCASPubMedGoogle Scholar
  106. Roztocki, P. & Morandotti, R. Astrocombs for extreme-precision spectroscopy. Nat. Astron.3, 135–136 (2019). ArticleGoogle Scholar
  107. Li, G., Zentgraf, T. & Zhang, S. Rotational doppler effect in nonlinear optics. Nat. Phys.12, 736–740 (2016). ArticleCASGoogle Scholar
  108. Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature546, 622–626 (2017). ArticleCASPubMedGoogle Scholar
  109. Zhong, H.-S. et al. Quantum computational advantage using photons. Science370, 1460 (2020). ArticleCASPubMedGoogle Scholar
  110. Autere, A. et al. Nonlinear optics with 2d layered materials. Adv. Mater.30, e1705963 (2018). ArticlePubMedGoogle Scholar
  111. Liu, X., Guo, Q. & Qiu, J. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater.29, 1605886 (2017). ArticleGoogle Scholar
  112. Zheng, P. & Wu, N. Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chem. Asian J.12, 2343–2353 (2017). ArticleCASPubMed CentralPubMedGoogle Scholar
  113. Mathkar, A. et al. Controlled, stepwise reduction and band gap manipulation of graphene oxide. J. Phys. Chem. Lett.3, 986–991 (2012). ArticleCASPubMedGoogle Scholar
  114. Lee, D. Y., Na, S. I. & Kim, S. S. Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale8, 1513–1522 (2016). ArticleCASPubMedGoogle Scholar
  115. Ghofraniha, N. & Conti, C. Graphene oxide photonics. J. Opt.21, 053001 (2019). ArticleCASGoogle Scholar
  116. Luo, Z., Vora, P. M., Mele, E. J., Johnson, A. T. C. & Kikkawa, J. M. Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett.94, 111909 (2009). ArticleGoogle Scholar
  117. Morales-Narvaez, E. & Merkoci, A. Graphene oxide as an optical biosensing platform. Adv. Mater.24, 3298–3308 (2012). ArticleCASPubMedGoogle Scholar
  118. Cushing, S. K., Li, M., Huang, F. & Wu, N. Origin of strong excitation wavelength dependent fluorescence of graphene oxide. ACS Nano8, 1002–1013 (2014). ArticleCASPubMedGoogle Scholar
  119. Yoon, H. J. et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol.8, 735–741 (2013). ArticleCASPubMed CentralPubMedGoogle Scholar
  120. Yim, Y., Shin, H., Ahn, S. M. & Min, D. H. Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chem. Commun.57, 9820–9833 (2021). ArticleCASGoogle Scholar
  121. Vermisoglou, E. et al. Human virus detection with graphene-based materials. Biosens. Bioelectron.166, 112436 (2020). ArticleCASPubMed CentralPubMedGoogle Scholar
  122. Park, S.-J. et al. Discovery of direct-acting antiviral agents with a graphene-based fluorescent nanosensor. Sci. Adv.6, eaaz8201 (2020). ArticleCASPubMed CentralPubMedGoogle Scholar
  123. Yim, S. H. et al. A fluorescent nanobiosensor for the facile analysis of m 6 A RNA demethylase activity. Chem. Commun.56, 4716–4719 (2020). ArticleCASGoogle Scholar
  124. Hwang, D. W. et al. Graphene oxide-quenching-based fluorescence in situ hybridization (G-FISH) to detect RNA in tissue: simple and fast tissue RNA diagnostics. Nanomed16, 162–172 (2019). ArticleCASGoogle Scholar
  125. Lee, J. S., Kim, S., Kim, S., Ahn, K. & Min, D. H. Fluorometric viral miRNA nanosensor for diagnosis of productive (lytic) human cytomegalovirus infection in living cells. ACS Sens.6, 815–822 (2021). ArticleCASPubMedGoogle Scholar
  126. Ahn, S. M., Kang, S. & Min, D. H. Direct monitoring of cancer-associated mRNAs in living cells to evaluate the therapeutic RNAi efficiency using fluorescent nanosensor. ACS Sens.4, 1174–1179 (2019). ArticleCASPubMedGoogle Scholar
  127. Liu, F., Choi, J. Y. & Seo, T. S. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens. Bioelectron.25, 2361–2365 (2010). ArticleCASPubMedGoogle Scholar
  128. He, S. et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater.20, 453–459 (2010). ArticleCASGoogle Scholar
  129. Zhang, B. et al. Recent progress in 2d material‐based saturable absorbers for all solid‐state pulsed bulk lasers. Laser Photonics Rev.14, 1900240 (2019). ArticleGoogle Scholar
  130. Wang, G., Baker‐Murray, A. A. & Blau, W. J. Saturable absorption in 2D nanomaterials and related photonic devices. Laser Photonics Rev.13, 1800282 (2019). ArticleGoogle Scholar
  131. Bao, Q. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater.19, 3077–3083 (2009). ArticleCASGoogle Scholar
  132. Yu, S. et al. All-optical graphene modulator based on optical Kerr phase shift. Optica3, 541 (2016). ArticleCASGoogle Scholar
  133. Li, W. et al. Ultrafast all-optical graphene modulator. Nano Lett.14, 955–959 (2014). ArticleCASPubMedGoogle Scholar
  134. Xiaohui, L. et al. Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers. IEEE J. Sel. Top. Quantum Electron.20, 441–447 (2014). ArticleGoogle Scholar
  135. Yasin, M., Thambiratnam, K., Soltani, S. & Ahmad, H. Highly stable mode-locked fiber laser with graphene oxide-coated side-polished D-shaped fiber saturable absorber. Opt. Eng.57, 1 (2018). Google Scholar
  136. Ahmad, H., Soltani, S., Thambiratnam, K., Yasin, M. & Tiu, Z. C. Mode-locking in Er-doped fiber laser with reduced graphene oxide on a side-polished fiber as saturable absorber. Opt. Fiber Technol.50, 177–182 (2019). ArticleCASGoogle Scholar
  137. Zhao, X. et al. Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide. Appl. Phys. Lett.98, 121905 (2011). ArticleGoogle Scholar
  138. Eda, G. et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater.22, 505 (2010). ArticleCASPubMedGoogle Scholar
  139. Zheng, X., Jia, B., Chen, X. & Gu, M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Adv. Mater.26, 2699–2703 (2014). ArticleCASPubMedGoogle Scholar
  140. Lee, J., Koo, J., Debnath, P., Song, Y. W. & Lee, J. H. A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber. Laser Phys. Lett.10, 035103 (2013). ArticleCASGoogle Scholar
  141. Steinberg, D. et al. Graphene oxide and reduced graphene oxide as saturable absorbers onto D-shaped fibers for sub 200-fs EDFL mode-locking. Optical Mater. Express8, 144 (2017). ArticleGoogle Scholar
  142. Zhang, Y. et al. Enhanced Kerr nonlinearity and nonlinear figure of merit in silicon nanowires integrated with 2D graphene oxide films. ACS Appl. Mater. Interfaces12, 33094–33103 (2020). ArticleCASPubMedGoogle Scholar
  143. DeLong, K. W., Trebino, R., Hunter, J. & White, W. E. Frequency-resolved optical gating with the use of second-harmonic generation. J. Opt. Soc. Am. B11, 2206–2215 (1994). ArticleCASGoogle Scholar
  144. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature562, 101 (2018). ArticleCASPubMedGoogle Scholar
  145. Jiang, Y., Tomov, I., Wang, Y. & Chen, Z. Second-harmonic optical coherence tomography. Opt. Lett.29, 1090–1092 (2004). ArticlePubMedGoogle Scholar
  146. Furst, J. U. et al. Quantum light from a whispering-gallery-mode disk resonator. Phys. Rev. Lett.106, 113901 (2011). ArticleCASPubMedGoogle Scholar
  147. Zhang, X. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics13, 21–24 (2018). ArticleGoogle Scholar
  148. Cazzanelli, M. et al. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat. Mater.11, 148–154 (2011). ArticleCASPubMedGoogle Scholar
  149. Sipe, J. E., Moss, D. J. & van Driel, H. M. Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals. Phys. Rev. B35, 1129–1141 (1987). ArticleCASGoogle Scholar
  150. Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol.10, 407–411 (2015). ArticleCASPubMedGoogle Scholar
  151. Chen, H. et al. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light. Sci. Appl.6, e17060 (2017). ArticleCASPubMed CentralPubMedGoogle Scholar
  152. Russier-Antoine, I. et al. Second harmonic scattering from mass characterized 2D graphene oxide sheets. Chem. Commun.56, 3859–3862 (2020). ArticleCASGoogle Scholar
  153. Fernandes, G. E., Kim, J. H., Osgood, R. & Xu, J. Field-controllable second harmonic generation at a graphene oxide heterointerface. Nanotechnology29, 105201 (2018). ArticlePubMedGoogle Scholar
  154. Yang, Y. et al. Invited article: enhanced four-wave mixing in waveguides integrated with graphene oxide. APL Photonics3, 120803 (2018). ArticleGoogle Scholar
  155. Qu, Y. et al. Enhanced four‐wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films. Adv. Opt. Mater.8, 2001048 (2020). ArticleCASGoogle Scholar
  156. Zhang, Y. et al. Enhanced self-phase modulation in silicon nitride waveguides integrated with 2D graphene oxide films. IEEE J. Sel. Top. Quantum Electron.https://doi.org/10.1109/JSTQE.2022.3177385 (2022). ArticleGoogle Scholar
  157. Zhang, Y. et al. Enhanced spectral broadening of femtosecond optical pulses in silicon nanowires integrated with 2D graphene oxide films. Micromachines13, 756 (2022). ArticlePubMed CentralPubMedGoogle Scholar
  158. Wu, J. et al. 2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics. Small16, e1906563 (2020). ArticlePubMedGoogle Scholar
  159. Eda, G., Mattevi, C., Yamaguchi, H., Kim, H. & Chhowalla, M. Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C.113, 15768–15771 (2009). ArticleCASGoogle Scholar
  160. Chang, Y.-C. et al. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun.7, 10568 (2016). ArticleCASPubMed CentralPubMedGoogle Scholar
  161. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol.3, 270–274 (2008). ArticleCASPubMedGoogle Scholar
  162. Seo, S., Yoon, Y., Lee, J., Park, Y. & Lee, H. Nitrogen-doped partially reduced graphene oxide rewritable nonvolatile memory. ACS Nano7, 3607–3615 (2013). ArticleCASPubMedGoogle Scholar
  163. Chen, X. et al. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. Nanoscale6, 13740–13747 (2014). ArticleCASPubMedGoogle Scholar
  164. Yuan, B. et al. Boron/phosphorus doping for retarding the oxidation of reduced graphene oxide. Carbon101, 152–158 (2016). ArticleCASGoogle Scholar
  165. Liu, X. et al. Nitrogen/sulfur dual-doping of reduced graphene oxide harvesting hollow ZnSnS3 nano-microcubes with superior sodium storage. Nano Energy57, 414–423 (2019). ArticleCASGoogle Scholar
  166. Bi, Y.-G. et al. Arbitrary shape designable microscale organic light-emitting devices by using femtosecond laser reduced graphene oxide as a patterned electrode. ACS Photonics1, 690–695 (2014). ArticleCASGoogle Scholar
  167. Chen, X., Jia, B., Zhang, Y. & Gu, M. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light. Sci. Appl.2, e92–e92 (2013). ArticleGoogle Scholar
  168. Bao, W. et al. Flexible, high temperature, planar lighting with large scale printable nanocarbon paper. Adv. Mater.28, 4684–4691 (2016). ArticleCASPubMedGoogle Scholar
  169. Gao, W. et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol.6, 496–500 (2011). ArticleCASPubMedGoogle Scholar
  170. Afroj, S., Tan, S., Abdelkader, A. M., Novoselov, K. S. & Karim, N. Highly conductive, scalable, and machine washable graphene‐based e‐textiles for multifunctional wearable electronic applications. Adv. Funct. Mater.30, 2000293 (2020). ArticleCASGoogle Scholar
  171. Yang, Y. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano14, 8754–8765 (2020). ArticleCASPubMedGoogle Scholar
  172. Karim, N., Afroj, S., Tan, S., Novoselov, K. S. & Yeates, S. G. All inkjet-printed graphene–silver composite ink on textiles for highly conductive wearable electronics applications. Sci. Rep.9, 8035 (2019). ArticlePubMed CentralPubMedGoogle Scholar
  173. Huang, J.-Q. et al. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano9, 3002–3011 (2015). ArticleCASPubMedGoogle Scholar
  174. Liu, Y., Li, Q., Ma, K., Yang, G. & Wang, C. Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano13, 12081–12089 (2019). ArticleCASPubMedGoogle Scholar
  175. Chen, H. et al. Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy6, 790–798 (2021). ArticleCASGoogle Scholar
  176. Zhu, J. et al. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N,S-dual-doped reduced graphene oxide for lithium ion batteries. ACS Nano14, 5780–5787 (2020). ArticleCASPubMedGoogle Scholar
  177. Yan, L. et al. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: a superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater.32, e2003313 (2020). ArticlePubMedGoogle Scholar
  178. Flouda, P., Shah, S. A., Lagoudas, D. C., Green, M. J. & Lutkenhaus, J. L. Highly multifunctional dopamine-functionalized reduced graphene oxide supercapacitors. Matter1, 1532–1546 (2019). ArticleGoogle Scholar
  179. Zhou, Y. et al. Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano14, 3576–3586 (2020). ArticleCASPubMedGoogle Scholar
  180. Down, M. P., Rowley-Neale, S. J., Smith, G. C. & Banks, C. E. Fabrication of graphene oxide supercapacitor devices. ACS Appl. Energy Mater.1, 707–714 (2018). ArticleCASGoogle Scholar
  181. Gu, Y. et al. N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J. Power Sources425, 60–68 (2019). ArticleCASGoogle Scholar
  182. Sun, H. et al. Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters. Appl. Surf. Sci.435, 809–814 (2018). ArticleCASGoogle Scholar
  183. Liu, C. et al. Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode. ACS Nano13, 6431–6437 (2019). ArticleCASPubMedGoogle Scholar
  184. Huang, S. et al. High-performance suspended particle devices based on copper-reduced graphene oxide core-shell nanowire electrodes. Adv. Energy Mater.8, 1703658 (2018). ArticleGoogle Scholar
  185. Wang, X. et al. A spectrally tunable all-graphene-based flexible field-effect light-emitting device. Nat. Commun.6, 7767 (2015). ArticleCASPubMedGoogle Scholar
  186. Han, N. et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat. Commun.4, 1452 (2013). ArticlePubMedGoogle Scholar
  187. Koppens, F. H. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol.9, 780–793 (2014). ArticleCASPubMedGoogle Scholar
  188. Rogalski, A. Graphene-based materials in the infrared and terahertz detector families: a tutorial. Adv. Opt. Photonics11, 314 (2019). ArticleGoogle Scholar
  189. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics4, 297–301 (2010). ArticleCASGoogle Scholar
  190. Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics7, 883–887 (2013). ArticleCASGoogle Scholar
  191. Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics7, 888–891 (2013). ArticleCASGoogle Scholar
  192. Liu, C. H., Chang, Y. C., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol.9, 273–278 (2014). ArticleCASPubMedGoogle Scholar
  193. Sun, X. et al. Broadband photodetection in a microfiber-graphene device. Opt. Express23, 25209–25216 (2015). ArticleCASPubMedGoogle Scholar
  194. Chang, H. et al. Thin film field-effect phototransistors from bandgap-tunable, solution-processed, few-layer reduced graphene oxide films. Adv. Mater.22, 4872–4876 (2010). ArticleCASPubMedGoogle Scholar
  195. Ghosh, S., Sarker, B. K., Chunder, A., Zhai, L. & Khondaker, S. I. Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett.96, 163109 (2010). ArticleGoogle Scholar
  196. Lin, Y. et al. Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. ACS Nano4, 3033–3038 (2010). ArticleCASPubMedGoogle Scholar
  197. Chitara, B., Krupanidhi, S. B. & Rao, C. N. R. Solution processed reduced graphene oxide ultraviolet detector. Appl. Phys. Lett.99, 113114 (2011). ArticleGoogle Scholar
  198. Chitara, B., Panchakarla, L. S., Krupanidhi, S. B. & Rao, C. N. R. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater.23, 5419–5424 (2011). ArticleCASPubMedGoogle Scholar
  199. Chang, H. et al. Regulating infrared photoresponses in reduced graphene oxide phototransistors by defect and atomic structure control. ACS Nano7, 6310–6320 (2013). ArticleCASPubMedGoogle Scholar
  200. Cao, Y., Zhu, J., Xu, J. & He, J. Tunable near-infrared photovoltaic and photoconductive properties of reduced graphene oxide thin films by controlling the number of reduced graphene oxide bilayers. Carbon77, 1111–1122 (2014). ArticleCASGoogle Scholar
  201. Zhu, M. et al. Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes. Nanoscale6, 4909–4914 (2014). ArticleCASPubMedGoogle Scholar
  202. Ito, Y. et al. 3D bicontinuous nanoporous reduced graphene oxide for highly sensitive photodetectors. Adv. Funct. Mater.26, 1271–1277 (2016). ArticleCASGoogle Scholar
  203. Moon, I. K., Ki, B., Yoon, S., Choi, J. & Oh, J. Lateral photovoltaic effect in flexible free-standing reduced graphene oxide film for self-powered position-sensitive detection. Sci. Rep.6, 33525 (2016). ArticleCASPubMed CentralPubMedGoogle Scholar
  204. Cao, Y. et al. Fully suspended reduced graphene oxide photodetector with annealing temperature-dependent broad spectral binary photoresponses. ACS Photonics4, 2797–2806 (2017). ArticleCASGoogle Scholar
  205. Tian, H., Cao, Y., Sun, J. & He, J. Enhanced broadband photoresponse of substrate-free reduced graphene oxide photodetectors. RSC Adv.7, 46536–46544 (2017). ArticleCASGoogle Scholar
  206. Yin, Z. et al. Graphene-based materials for solar cell applications. Adv. Energy Mater.4, 1300574 (2014). ArticleGoogle Scholar
  207. Liu, Z. et al. Organic photovoltaic devices based on a novel acceptor material: graphene. Adv. Mater.20, 3924–3930 (2008). ArticleCASGoogle Scholar
  208. Gupta, V. et al. Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc.133, 9960–9963 (2011). ArticleCASPubMedGoogle Scholar
  209. Hsu, H. C. et al. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale5, 262–268 (2013). ArticleCASPubMedGoogle Scholar
  210. Yang, K. et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett.10, 3318–3323 (2010). ArticleCASPubMedGoogle Scholar
  211. Robinson, J. T. et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc.133, 6825–6831 (2011). ArticleCASPubMedGoogle Scholar
  212. Li, M., Yang, X., Ren, J., Qu, K. & Qu, X. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv. Mater.24, 1722–1728 (2012). ArticleCASPubMedGoogle Scholar
  213. von Maltzahn, G. et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res.69, 3892–3900 (2009). ArticlePubMed CentralGoogle Scholar
  214. Su, Y. et al. Impermeable barrier films and protective coatings based on reduced graphene oxide. Nat. Commun.5, 4843 (2014). ArticleCASPubMedGoogle Scholar
  215. Nine, M. J., Cole, M. A., Tran, D. N. H. & Losic, D. Graphene: a multipurpose material for protective coatings. J. Mater. Chem. A3, 12580–12602 (2015). ArticleCASGoogle Scholar
  216. Singh, V. K. et al. Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon50, 2202–2208 (2012). ArticleCASGoogle Scholar
  217. Ran, J., Shen, L., Zhong, L. & Fu, H. Synthesis of silanized MoS2/reduced graphene oxide for strong radar wave absorption. Ind. Eng. Chem. Res.56, 10667–10677 (2017). ArticleCASGoogle Scholar
  218. Liu, H.-K., Yang, R.-B. & Yen, K.-D. Radar-absorbing structures with reduced graphene oxide papers fabricated under various processing parameters. J. Electron. Mater.51, 985–994 (2022). ArticleCASGoogle Scholar
  219. Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science342, 95 (2013). ArticleCASPubMedGoogle Scholar
  220. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science343, 752 (2014). ArticleCASPubMedGoogle Scholar
  221. Shen, J. et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano10, 3398–3409 (2016). ArticleCASPubMedGoogle Scholar
  222. Qi, B. et al. Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes. Nat. Commun.8, 825 (2017). ArticlePubMed CentralPubMedGoogle Scholar
  223. Leo Tsui, H. C. et al. Graphene oxide integrated silicon photonics for detection of vapour phase volatile organic compounds. Sci. Rep.10, 9592 (2020). ArticleCASPubMed CentralPubMedGoogle Scholar
  224. Kusuma, J. et al. Exploration of graphene oxide nanoribbons as excellent electron conducting network for third generation solar cells. Sol. Energy Mater. Sol. Cell183, 211–219 (2018). ArticleCASGoogle Scholar
  225. Sarkar, A., Chakraborty, A. K. & Bera, S. NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cell182, 314–320 (2018). ArticleCASGoogle Scholar
  226. Wang, T. et al. Fabrication of architectural structured polydopamine-functionalized reduced graphene oxide/carbon nanotube/PEDOT:PSS nanocomposites as flexible transparent electrodes for OLEDs. Appl. Surf. Sci.500, 143997 (2020). ArticleCASGoogle Scholar
  227. Kweon, D. H. & Baek, J. B. Edge-functionalized graphene nanoplatelets as metal-free electrocatalysts for dye-sensitized solar cells. Adv. Mater.31, e1804440 (2019). ArticlePubMedGoogle Scholar
  228. Yuan, B. et al. Reduced graphene oxide (rGO)/Cu2S composite as catalytic counter electrode for quantum dot-sensitized solar cells. Electrochim. Acta277, 50–58 (2018). ArticleCASGoogle Scholar
  229. Wang, S. et al. In situ growth of Co9S8 nanocrystals on reduced graphene oxide for the enhanced catalytic performance of dye-sensitized solar cell. J. Alloy. Compd.803, 216–223 (2019). ArticleCASGoogle Scholar
  230. Lin, Y., Zhu, C. & Fang, G. Synthesis and properties of microencapsulated stearic acid/silica composites with graphene oxide for improving thermal conductivity as novel solar thermal storage materials. Sol. Energy Mater. Sol. Cell189, 197–205 (2019). ArticleCASGoogle Scholar
  231. Yang, J. et al. Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol. Energy Mater. Sol. Cell174, 56–64 (2018). ArticleGoogle Scholar
  232. Martín-García, B. et al. Reduction of moisture sensitivity of PbS quantum dot solar cells by incorporation of reduced graphene oxide. Sol. Energy Mater. Sol. Cell183, 1–7 (2018). ArticleGoogle Scholar
  233. Liang, R. et al. Interface anchored effect on improving working stability of deep ultraviolet light-emitting diode using graphene oxide-based fluoropolymer encapsulant. ACS Appl. Mater. Interfaces10, 8238–8244 (2018). ArticleCASPubMedGoogle Scholar
  234. Behura, S. K., Wang, C., Wen, Y. & Berry, V. Graphene–semiconductor heterojunction sheds light on emerging photovoltaics. Nat. Photonics13, 312–318 (2019). ArticleCASGoogle Scholar
  235. Lyu, C. K. et al. Functionalized graphene oxide enables a high-performance bulk heterojunction organic solar cell with a thick active layer. J. Phys. Chem. Lett.9, 6238–6248 (2018). ArticleCASPubMedGoogle Scholar
  236. Vaqueiro-Contreras, M. et al. Graphene oxide films for field effect surface passivation of silicon for solar cells. Sol. Energy Mater. Sol. Cell187, 189–193 (2018). ArticleCASGoogle Scholar
  237. Li, H. et al. Enhancing efficiency of perovskite solar cells via surface passivation with graphene oxide interlayer. ACS Appl. Mater. Interfaces9, 38967–38976 (2017). ArticleCASPubMedGoogle Scholar
  238. Wong, S. I. et al. Tailoring reduction extent of flash-reduced graphene oxides for high performance supercapacitors. J. Power Sources478, 228732 (2020). ArticleCASGoogle Scholar
  239. Dong, L., Yang, J., Chhowalla, M. & Loh, K. P. Synthesis and reduction of large sized graphene oxide sheets. Chem. Soc. Rev.46, 7306–7316 (2017). ArticleCASPubMedGoogle Scholar
  240. Koos, C. et al. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics3, 216–219 (2009). ArticleCASGoogle Scholar
  241. Morelos-Gomez, A. et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol.12, 1083–1088 (2017). ArticleCASPubMedGoogle Scholar
  242. Gómez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett.7, 3499–3503 (2007). ArticlePubMedGoogle Scholar
  243. Liu, M. et al. A graphene-based broadband optical modulator. Nature474, 64–67 (2011). ArticleCASPubMedGoogle Scholar
  244. Phare, C. T., Daniel Lee, Y.-H., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics9, 511–514 (2015). ArticleCASGoogle Scholar
  245. Sorianello, V. et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photonics12, 40–44 (2017). ArticleGoogle Scholar
  246. Mishra, A. & Bauerle, P. Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chem. Int. Ed.51, 2020–2067 (2012). ArticleCASGoogle Scholar
  247. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photonics10, 295–302 (2016). ArticleCASGoogle Scholar
  248. Tang, Q., Wang, X., Yang, P. & He, B. A solar cell that is triggered by sun and rain. Angew. Chem. Int. Ed. Engl.55, 5243–5246 (2016). ArticleCASPubMedGoogle Scholar
  249. Liu, X. et al. Enhanced X-ray photon response in solution-synthesized CsPbBr3 nanoparticles wrapped by reduced graphene oxide. Sol. Energy Mater. Sol. Cell187, 249–254 (2018). ArticleCASGoogle Scholar
  250. Chandrasekhar, P. S., Dubey, A. & Qiao, Q. High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Sol. Energy197, 78–83 (2020). ArticleCASGoogle Scholar
  251. Zheng, Q. et al. Solution-processed composite interfacial layer of MoOx-doped graphene oxide for robust hole injection in organic light-emitting diode. Phys. Status Solidi Rapid Res. Lett.12, 1700434 (2018). ArticleGoogle Scholar
  252. Jokar, E. et al. Anomalous charge-extraction behavior for graphene-oxide (GO) and reduced graphene-oxide (rGO) films as efficient p-contact layers for high-performance perovskite solar cells. Adv. Energy Mater.8, 1701640 (2018). ArticleGoogle Scholar
  253. Milić, J. V., Arora, N., Dar, M. I., Zakeeruddin, S. M. & Grätzel, M. Reduced graphene oxide as a stabilizing agent in perovskite solar cells. Adv. Mater. Interfaces5, 1800416 (2018). ArticleGoogle Scholar
  254. Balis, N. et al. Investigating the role of reduced graphene oxide as a universal additive in planar perovskite solar cells. J. Photochem. Photobiol. A Chem.386, 112141 (2020). ArticleCASGoogle Scholar
  255. Zhou, Y. et al. Effects of PEDOT:PSS:GO composite hole transport layer on the luminescence of perovskite light-emitting diodes. RSC Adv.10, 26381–26387 (2020). ArticleCASPubMed CentralPubMedGoogle Scholar
  256. Mohseni, H. R. et al. Enhancement of the photovoltaic performance and the stability of perovskite solar cells via the modification of electron transport layers with reduced graphene oxide/polyaniline composite. Sol. Energy213, 59–66 (2021). ArticleCASGoogle Scholar
  257. Yamada, K., Okamoto, M., Sakurai, M., Suenobu, T. & Nakayama, K. I. Solution-processable reduced graphene oxide template layer for molecular orientation control of organic semiconductors. RSC Adv.9, 32940–32945 (2019). ArticleCASPubMed CentralPubMedGoogle Scholar
  258. Gao, Y. et al. Surface doping of conjugated polymers by graphene oxide and its application for organic electronic devices. Adv. Mater.23, 1903–1908 (2011). ArticleCASPubMedGoogle Scholar
  259. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photonics4, 518–526 (2010). ArticleCASGoogle Scholar
  260. Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science351, 1176–1180 (2016). ArticleCASPubMedGoogle Scholar
  261. Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep.729, 1–81 (2018). ArticleCASGoogle Scholar
  262. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature557, 81–85 (2018). ArticleCASPubMedGoogle Scholar
  263. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature562, 401–405 (2018). ArticleCASPubMedGoogle Scholar
  264. Yao, B. et al. Gate-tunable frequency combs in graphene-nitride microresonators. Nature558, 410–414 (2018). ArticleCASPubMedGoogle Scholar
  265. Zuo, Y. et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat. Nanotechnol.15, 987–991 (2020). ArticleCASPubMedGoogle Scholar
  266. Li, L., Yu, L., Lin, Z. & Yang, G. Reduced TiO2-graphene oxide heterostructure as broad spectrum-driven efficient water-splitting photocatalysts. ACS Appl. Mater. Interfaces8, 8536–8545 (2016). ArticleCASPubMedGoogle Scholar
  267. Shi, H. et al. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed.59, 12147–12153 (2020). ArticleCASGoogle Scholar
  268. Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater.1, 26–33 (2002). ArticleCASPubMedGoogle Scholar
  269. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photonics6, 749–758 (2012). ArticleCASGoogle Scholar
  270. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol.6, 630–634 (2011). ArticleCASPubMedGoogle Scholar
  271. Lee, B. R. et al. Highly efficient polymer light-emitting diodes using graphene oxide as a hole transport layer. ACS Nano6, 2984–2991 (2012). ArticleCASPubMedGoogle Scholar
  272. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics4, 611–622 (2010). ArticleCASGoogle Scholar
  273. Demetriou, G. et al. Nonlinear optical properties of multilayer graphene in the infrared. Opt. Express24, 13033–13043 (2016). ArticleCASPubMedGoogle Scholar
  274. Xu, X. et al. Observation of third-order nonlinearities in graphene oxide film at telecommunication wavelengths. Sci. Rep.7, 9646 (2017). ArticlePubMed CentralPubMedGoogle Scholar
  275. Mu, X., Wu, X., Zhang, T., Go, D. B. & Luo, T. Thermal transport in graphene oxide — from ballistic extreme to amorphous limit. Sci. Rep.4, 3909 (2014). ArticlePubMed CentralPubMedGoogle Scholar
  276. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett.8, 902–907 (2008). ArticleCASPubMedGoogle Scholar
  277. Erickson, K. et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater.22, 4467–4472 (2010). ArticleCASPubMedGoogle Scholar
  278. Furio, A. et al. Light irradiation tuning of surface wettability, optical, and electric properties of graphene oxide thin films. Nanotechnology28, 054003 (2016). ArticlePubMedGoogle Scholar
  279. Hong, J. et al. Terahertz conductivity of reduced graphene oxide films. Opt. Express21, 7633–7640 (2013). ArticleCASPubMedGoogle Scholar
  280. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA102, 10451 (2005). ArticleCASPubMed CentralPubMedGoogle Scholar
  281. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol.9, 372–377 (2014). ArticleCASPubMedGoogle Scholar
  282. Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc.80, 1339–1339 (1958). ArticleCASGoogle Scholar
  283. Brisebois, P. P. & Siaj, M. Harvesting graphene oxide — years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C.8, 1517–1547 (2020). ArticleCASGoogle Scholar
  284. Iskandar, F., Hikmah, U., Stavila, E. & Aimon, A. H. Microwave-assisted reduction method under nitrogen atmosphere for synthesis and electrical conductivity improvement of reduced graphene oxide (rGO). RSC Adv.7, 52391–52397 (2017). ArticleCASGoogle Scholar
  285. Zhang, J. et al. Reduction of graphene oxide via L -ascorbic acid. Chem. Commun.46, 1112–1114 (2010). ArticleCASGoogle Scholar
  286. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature448, 457–460 (2007). ArticleCASPubMedGoogle Scholar
  287. Zhang, W. H. et al. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat. Nanotechnol.16, 337–343 (2021). ArticlePubMedGoogle Scholar

Acknowledgements

This work was supported by the Australian Research Council Discovery Projects Programmes (nos. DP150102972, DP190103186 and DP220100603, FT210100806), the Swinburne ECR-SUPRA programme, the Industrial Transformation Training Centers scheme (grant no. IC180100005) and the Beijing Natural Science Foundation (no. Z180007).